The Primary Care Rheumatology Society (PCRS) comprises a group of GPs interested in, and with expertise in musculoskeletal medicine. Most of our members work in primary care, but many also in intermediate and secondary care.

The following advice incorporates the minimum information that the PCRS feels should be included in any set of guidelines on joint and soft tissue injections.

Please note the ultimate responsibility for the completeness and accuracy of the information provided to patients regarding joint and soft tissue injections rests with the individual clinician and the organisation employing them.

We have conducted a literature search of relevant evidence, searching under the broad headings listed within the guidance, or variations thereof, using the e-resources databases of the University of Bournemouth and NICE. The searches concentrated on systemic reviews, meta-analyses, randomised controlled trials (RCTs), and controlled trials where available. We also made use of the expert opinions within the group where evidence was missing, contradictory or incomplete.

This guidance focuses primarily on steroid injections.
Introduction

Steroid Injections have been used widely for many years to help ease the discomfort and loss of function associated with joint and soft tissue disorders. Numerous studies and extensive clinical experience have established that such injections are generally a safe and effective treatment option, for example in knee osteoarthritis, an effect size of 1.27 vs placebo at 7 days has been demonstrated (> 0.8 is considered good effect size). In addition there is evidence to suggest that in humans, glucocorticoids may be chondro-protective.

There is apparently wide variability in clinical practice regarding exactly when and how joint and soft tissue injections are performed.

The PCRS therefore decided to develop some guidance regarding the safe and appropriate use of these injections which clinicians may find helpful.

The aim of this guidance is not to dictate how things should be done, or to replace clinical judgement. The PCRS recognises that every patient and clinical presentation is unique and the working environment is different for every practitioner. Many clinicians are obliged to work in highly time pressured environments and for this reason we have tried to keep this guidance concise. The intention is to provide a usable and safe framework which is appropriate for most clinical settings but can be modified according to individual requirements and as new evidence comes to light.

The PCRS advises that any person carrying out injections must be adequately trained to do so. Arrangements should also be in place for ongoing staff development and clinical governance procedures to ensure continued safe and high quality practice.

Full resuscitation equipment must be immediately available and staff must be appropriately trained in its use.

As Joint and soft tissue injections involve exposure to body fluids, the practitioner must be protected by means of appropriate immunisation, the use of gloves, and safe sharps disposal.
Indications for joint and soft tissue injection include:

- Arthritis
- Bursitis
- Tendinopathy and tenosynovitis
- Enthesopathy
- Neuromas
- Ganglion cysts
- Entrapment and impingement syndromes
- Regional pain including back pain

Potential complications from injection include²,⁴

- Hypersensitivity – local or systemic
- Tissue atrophy, nodule formation and skin hypopigmentation
- Tendon Rupture
- Infection, local or systemic
- Post injection flare of symptoms
- Facial flushing – usually 24-72 hours post injection and predominantly women.
- Menstrual irregularity
- Elevated blood sugar in diabetic patients
- Fainting
- Steroid induced osteonecrosis or arthropathy

Contraindications to injection include;²,⁵

- Allergy
- Local or systemic infection
- Active rash / broken skin at site of injection
- Uncontrolled Coagulopathy
- Fracture/unstable joint
- Tendon regions at high risk of rupture
- Injection into a prosthetic joint
Suggested approach to joint and soft tissue injection.

- Informed consent (see below); in particular warn patient to report symptoms or signs of infection urgently.
- Supply patient with appropriate information leaflet
- Check INR on patients taking warfarin prior to the procedure
- Select the appropriate steroid preparation for the injection to be undertaken
- Use sterile alcohol swab to clean rubber seal on steroid vial if required
- Draw up local anaesthetic and steroid and discard needle(s)
- Attach new sterile needle(s)
- Mark skin injection site for example using plastic needle cover. If using skin pen avoid injecting through ink as this risks tattooing skin.
- Clean area with appropriate topical antiseptic
- If using ultrasound guided technique, use sterile gel and sterile probe cover if contamination risk.
- Inject using no touch technique (unless full sterility observed).
- Aspirate pre injection to ensure vessel not entered
- Cover site with sterile dressing
- The patient should be advised to remain in the department for 20 minutes post injection.
- Advise the patient to undertake relative rest for 24 to 48 hours after the injection particularly if the knee is injected.
- Advise the patient to avoid heavy, strenuous activities for 2 weeks post injection into a peri-tendinous region.
Background to guidance

Consent

Organisations require procedures in place relating to the dissemination of patient information and consent.

The law on informed consent changed following a Supreme Court judgment in the case Montgomery v Lanarkshire Health Board 2015. The change however simply enshrines in law consent practices which had previously been recommended by the GMC and defence unions.

Doctors must now ensure that patients are aware of any “material risks” involved when undergoing a proposed treatment, and of reasonable alternatives. This replaces the “Bolam test”, which asks whether a doctor’s conduct would be supported by a responsible body of medical opinion. “The test of materiality is whether, in the circumstances of the particular case, a reasonable person in the patient’s position would be likely to attach significance to the risk, or the doctor is or should reasonably be aware that the particular patient would be likely to attach significance to it.”

In the context of joint and soft tissue injections, the patient must be informed about the relevant risks and benefits of the injection. The clinician should document that such a discussion has taken place and that the patient has consented to the treatment. In England the patient is not required to sign a consent form and this may in fact be less medico legally robust than clear and reasonable documentation of the discussion in the notes.

According to the MPS website ‘The notes do not need to be exhaustive, but should state the nature of the proposed procedure or treatment and itemise the risks, benefits and alternatives brought to the attention of the patient. Any particular fears or concerns raised by the patient should also be noted’.

It is helpful for patient and clinician if the patient receives an information sheet to read prior to the procedure and to take away, detailing potential relevant adverse effects.

Please see the relevant guidance provided by medical defence organisations and the GMC for further details.

Infection risk

Infection is considered a rare complication of joint and soft tissue injection. However the consequences can be catastrophic. Rates between 1:3000 and 1:50,000 are quoted in the literature. However this rate may be higher in immunosuppressed patients i.e. in the region of 1:2000.
Hand mediated transmission is the major factor contributing to healthcare associated infection (HCAI). Public Health England provides information regarding standard measures to reduce the risks of HCAI, including effective hand decontamination, the appropriate use of gloves, avoiding fomite contamination\(^1\).

Patient skin preparation is generally recommended prior to surgical procedures to reduce skin bacteria numbers and thereby the risk of infection. There appears to be little published information however on infection rates when no skin cleaning has been carried out prior to joint injection. One PCRS member has no known cases of infection resulting from over 5000 joint injections despite using no skin preparation.

Prior to any procedure and skin preparation, the skin should obviously be free of visible dirt. The antiseptic preparation should be applied in concentrically enlarging circles beginning at the site of proposed injection\(^1\). There have been rare recorded incidents of infection resulting from contaminated topical antiseptics; in some cases this was believed to result from user interference with the product, for example by dilution. All skin preparations should be used strictly in accordance with the manufacturer’s instructions and within date. Consideration should be given to the use of single use skin preparations labelled as sterile\(^1\),\(^1\). Antiseptic contamination should be considered should infection occur post injection.

Commonly used products for surgical procedures include alcohol based, chlorhexidine based and iodine based. These are all considered effective antimicrobial skin cleansers\(^1\),\(^2\),\(^3\),\(^4\).

Alcohol for skin preparation is defined by the FDA as ethyl alcohol, 60% to 95% by volume in an aqueous solution, or isopropyl alcohol, 50% to 91.3% by volume in an aqueous solution. Alcohol is fast although short acting, has broad-spectrum antimicrobial activity (spores can be resistant), and is inexpensive\(^1\). Flammability is an issue in the presence of electrical equipment. This is unlikely to be an issue in the context of office based joint injections. Allowing alcohol to dry on the skin avoids alcohol being inoculated with the injection which may cause stinging.

One study in 2002 compared an isopropyle alcohol swab with chlorhexidine in spirit soaked cotton wool balls\(^5\). The discarded needles were cultured. No infections occurred during the study and there was no statistical difference between the groups regarding positive needle culture. However it was quicker and therefore cheaper to prepare the skin with alcohol. Both methods reduced the rate of positive culture compared to control (culture of needles from non-cleansed IM injections). No positive cultures grew pathogens typically associated with joint infection.

Bacterial resistance to chlorhexidine digluconate has been reported in Enterobacter spp., Pseudomonas spp., Proteus spp., Providencia spp. and Enterococcus spp.\(^6\). Recent studies suggest that alcohol-based solutions of chlorhexidine and iodine may have greater efficacy, easier application, extended durability, and better cost effectiveness when compared with aqueous-based solutions\(^7\).
Dust covers on vials are not necessarily adequate to ensure sterility of the outside of the vial top. Therefore swabbing with sterile alcohol swab is recommended for some medications. Single use ampoules should be discarded after the required amount of drug is drawn up and not re-used for subsequent patients.

Tendon Rupture

There have been case reports of tendon rupture following steroid injection and ingestion. Biopsy studies have demonstrated reduced cell viability and proliferation, reduced collagen synthesis and organisation, and reduced strength as a result of tendon exposure to steroid. This effect has been shown to persist for 2 weeks in some studies, longer in others. Yang et al 2014 cultured rat tenocytes with triamcinolone or lidocaine or both. They found in vitro evidence of a deleterious effect on tenocytes of both steroid and lidocaine and that the effect was synergistic when the tenocytes were exposed to triamcinolone and lidocaine together.

In general, it is therefore considered prudent to avoid injecting steroid into the body of a tendon, by using good injection technique and image guidance if available. Also unless compelling reasons to do so, avoid steroid injections in the vicinity of tendons at high risk of rupture due to pathology (severe tendinopathy) or anatomical location (achilles).

Osteonecrosis

The risk of osteonecrosis is highest with prolonged, high doses of exogenous steroids, particularly in the presence of other risk factors. Short courses of steroids however have also been shown to increase the risk of this rare complication. There have also been reported case studies of avascular necrosis temporally related to local intra-articular steroid administration. It would seem wise to warn patients of this potential rare but devastating, complication prior to steroid injection, particularly in the presence of other risk factors for avascular necrosis.

Anti-coagulation and joint injection.

The decision to undertake Joint and soft tissue injection in patients who are anti-coagulated requires careful consideration and alternative management strategies should be considered. However analgesic options are often limited in these patients.

For patients taking warfarin, provided the INR is within the therapeutic range i.e. less than 4.5, the risk of significant haemorrhage following joint or soft tissue injection appears very low. Bashir et al 2015 reported no occurrences of significant haemorrhage following shoulder and knee injections in patients in whom the INR was 5.5 or less.
Many patients are now taking Direct Oral anticoagulants (DOACs), also known as target-specific oral anticoagulants (TSOACs) and oral direct inhibitors (ODIs)35.

Dabigatran –is an oral direct thrombin inhibitor. Rivaroxaban, Apixaban, and Edoxaban are oral direct factor Xa inhibitors35.

Information obtained from the manufacturers of Dabigatran36 and Rivaroxaban37 advises that along with warfarin, ‘patients undergoing minor procedures may not require interruption of anticoagulation’. These agents have a shorter half-life than warfarin and consideration should be given to avoiding interventional procedures during peak drug activity – i.e. For rivaroxaban this would be is 2-4 hours after the last dose.

If bleeding should occur in patients taking DOACs, expert opinion suggests that in many instances, bleeding can be managed by withholding the DOAC and providing supportive care38. At the time of writing in the UK, only dabigatran has a licensed antidote, Idarucizumab. This is indicated to reverse dabigatran in patients with life threatening haemorrhage or requiring urgent surgery38. Reversal agents for the other DOACs are currently under development39,35.

In summary, joint and soft tissue injections may be appropriate in managing patients who are anti-coagulated. Given that interrupting anticoagulation may precipitate life threatening thrombosis, the benefits of continuing anticoagulation generally greatly outweigh the small risk of bleeding as a result of a joint injection. However the risks of haemorrhage and a management plan in the event of this complication should be discussed with the patient in advance.

Steroid type, dose and frequency

Common steroids used for joint and soft tissue injections in the UK include; hydrocortisone acetate, methylprednisolone and triamcinolone acetonide. Betamethasone, dexamethasone and triamcinolone hexacetonide are also licenced in the UK40. Of these, betamethasone and triamcinolone are the least soluble and are therefore considered the slowest to diffuse out of the joint and to give rise to the longest therapeutic action41.

There is some evidence of chondro-protection by steroid indicated by a decrease in cartilage breakdown products in the circulation and joint fluid post injection3,41. In humans and other primates, several studies have shown no definitive evidence of harm resulting from multiple steroid injections at the knee5,42. Some animal studies however have suggested a toxic effect of steroid on articular cartilage. The ultimate effect may in part be dose dependent, with lower doses resulting in a reduction in the synthesis of proteolytic enzymes and an increased synthesis of proteoglycans, whilst higher doses may cause a decrease in type II collagen expression43. Occasional cases of apparent accelerated joint damage in
humans post steroid injection have been documented ‘steroid arthropathy’. However analyses of some of these reported cases have suggested that factors other than steroid toxicity may have been responsible.

There seems to be little evidence regarding the optimum dose or frequency of steroid injection and routine practice appears to be based on experience rather than evidence. A literature review of the evidence in this area carried out by Stevens et al 2008 ultimately concluded that ‘The medication used and the frequency of injection should be guided by the goal of the injection, the underlying musculoskeletal diagnosis, and clinical experience’

Similarly Douglas’ 2012 literature search regarding the frequency of joint injection in osteoarthritis concluded ‘All published information concerning the frequency of intra articular corticosteroid injection appears to be based upon professional opinion - a search of the published medical literature failed to identify a study that had investigated how often intra articular corticosteroid can be injected into an osteoarthritic joint.

Systemic absorption of steroid has been shown to affect the hypothalamic- pituitary-adrenal (HPA) axis after steroid joint injections. HPA-axis suppression can typically last up to four weeks after a single injection, occasionally longer, depending on the dose and frequency of injections.

This is incidentally also the same mechanism thought to affect menstruation. Rare cases of Cushing’s syndrome have been reported but generally using unusually high doses and frequencies of joint injection. HIV patients on anti-retroviral medications may be particularly susceptible to iatrogenic Cushing’s syndrome. Careful consideration should be given to this complication if multiple or repeat steroid injections are undertaken.

Soft tissue atrophy is an uncommon complication of steroid injection even in superficial dermatological procedures involving steroid injection. However it may persist for years. It is thought to be due to persistence of steroid crystals in the tissues and is therefore less likely to occur with more soluble preparations. These are therefore preferred for soft tissue and superficial injections.

In summary, in the absence of convincing evidence to the contrary, it seems prudent to follow the manufacturer’s instructions with regard to maximum dose and frequency for each steroid formulation. From speaking to PCRS members these are actually higher than most practitioners would routinely use. The BNF states that ‘Each joint should not usually be treated more than 4 times in one year’. There are many readily accessible text books, web sites and academic papers which give useful recommended doses for various steroid injections based on clinical experience.
Hyperglycaemia

Intra articular and soft tissue steroid injections have been shown to elevate blood sugar in diabetic patients, commencing after a few hours and lasting for several days and occasionally longer. Although these increases in glycaemia are statistically significant, for most patients they are generally not clinically significant. However diabetic patients should be warned of this effect.

Post injection advice

Anaphylaxis

According to the resuscitation council UK website, the time course for cardiopulmonary arrest resulting from injected medication predominantly occurs between 2 and 20 minute post injection. It would seem sensible therefore, that patients are asked to remain on site for the full 20 minutes.

1. Slide Reproduced with the kind permission of the Resuscitation Council (UK).
Rest

Rest following the injection is often advised. Reduced ‘leakage’ of injected substances out of the rested joint compared to non-rested joints, has been demonstrated in inflammatory conditions. The implication therefore, is that rest will result in a more prolonged therapeutic action of the injected substance. Some studies have shown prolonged symptom relief in inflammatory arthritis of the knee in rested compared to unrested joints. Also Weitof and Larsson 2005 demonstrated a greater fall in cartilage breakdown products in those patients who had been allocated to bed rest for 24 hours post injection of 20 mg of triamcinolone hexacetonide.

However a study by Chatham et al found no evidence of symptomatic benefit for rest post steroid injection for inflammatory arthritis. Also rest post injection may be detrimental at some joints e.g. at the wrist.

Further research is required to determine if rest following injection is beneficial, particularly for degenerative conditions in non-weight bearing joints. This is pertinent given the accepted health risks associated with immobility.

At present however it would seem sensible to advise relative rest following injection of the knee joint particularly in the presence of inflammation for 24-48 hours.

For tendinous injections, or peri-tendinous injections, especially where there is a risk of inadvertent tendon injection, it may be advisable to recommend avoidance of strenuous activities for up to 2 weeks.
References

21. Kampf G: Acquired resistance to chlorhexidine - is it time to establish an 'antiseptic stewardship' initiative? The Journal of hospital infection; Nov 2016; vol. 94 (no. 3); p. 213-227

22. Oh J, Jo L, Lee J I: Do not rush to return to sports after trigger finger injection American journal of physical medicine & rehabilitation / Association of Academic physiatrists; Apr 2015; vol. 94 (no. 4)

24. Yadkikar SV, Yadkikar VS, Gandhi D R, Jalindhra V: bilateral atraumatic tendoachilles rupture following steroid injection - A rare clinical presentation. Pravara Medical Review; 2015; vol. 7 (no. 2); p. 18-21

37. Xarelto® (rivaroxaban) Enquiry 0058320/UK medical.information@bayer.co.uk [medical.information@bayer.co.uk] Dec 2013

51. Povlsen B, Povlsen S D: Steroid injection for shoulder pain causes prolonged increased glucose level in type 1 diabetics. BMJ Case Reports; Sep 2014; vol. 2014

54. https://www.resus.org.uk/search/?q=anaphylaxis accessed June 2017

